Tumor-derived circulating cell-free DNA (cfDNA) provides critical clues for cancer early diagnosis, yet it often suffers from low sensitivity. Here, we present a cancer early diagnosis approach using tumor fractions deciphered from circulating cfDNA methylation signatures. We show that the estimated fractions of tumor-derived cfDNA from cancer patients increase significantly as cancer progresses in two independent datasets. Employing the predicted tumor fractions, we establish a Bayesian diagnostic model in which training samples are only derived from late-stage patients and healthy individuals. When validated on early-stage patients and healthy individuals, this model exhibits a sensitivity of 86.1% for cancer early detection and an average accuracy of 76.9% for tumor localization at a specificity of 94.7%. By highlighting the potential of tumor fractions on cancer early diagnosis, our approach can be further applied to cancer screening and tumor progression monitoring.
Add the publication’s full text or supplementary notes here. You can use rich formatting such as including code, math, and images.